

Abstract—I attempted to design and

implement a procedure for localizing objects in

a region using object colors. The platform used

was the Rovio robot. To accomplish this task

the image from the robot was analyzed to

distinguish directions of color to correspond to

objects within the scene. This was then

combined with the position information from

Rovio’s navigation system to allow for specific

direction information within the environment.

I. INTRODUCTION

THIS project focused on the use of Rovio to create

a map of a scene. The method used for creating

the scene was developed specifically for this

application. Rovio’s navigation information and

web camera were used in combination.

The web camera’s image was analyzed to divide

it into vertical segments that indicated significant

vertical attributes in the scene. This technique was

designed in reaction to the realization that most

objects within a scene have a significant vertical

component. Some examples of this are doorways,

boxes, chair legs, and trash receptacles. The

vertical segments were produced using the general

design of a color segmentation algorithm. This

vertical information is then projected in directions

determined by the camera’s view.

Following this image analysis the projection is

then combined with the navigation information to

locate it on a 2D plane of the floor. By projecting

this information onto the floor a general idea of

object location can be derived. Combined with

different perspectives on the same region specific

locations can be determined by locations in which

directions of the same color overlap.

With enough views and perspective the entire

region within Rovio’s navigation system could

have been accurately mapped; however, this

project did not make it that far towards

implementation.

II. PROCEDURE FOR MAPPING SYSTEM

A. Analyze Web Camera Image

The image analysis technique stemmed from the

graph based color segmentation algorithm. The

image initially is smoothed by a Gaussian filter.

Then each vertical line of pixels was distinguished

as a node. The difference between each node and

their neighbor is established by a simple squared

difference calculation. This produces a weighted

edge between each node. Afterwards, the edges

are sorted and are inserted into the graph from

lowest weight to highest. The edge is only inserted

if the max difference of the two different

connected components on each end of the edge

plus a threshold value scaled by the size of the

connected component is greater than the weight of

the edge to be inserted.

 After all the edges have been inserted into the

graph what this creates is a collection of connected

components of vertical lines that share generally

similar attributes. This follows from the

philosophy that the algorithm is looking for

vertical features in the image like chair legs and

door frames. After these initial groups are created

the smaller groups are removed from the

collection. This is necessary because at the border

between various vertical features in the image

there are liable to be significant changes in the

vertical lines of pixels that aren’t significant to the

actual object we’re looking to differentiate.

 Each of these groups is then assigned a color

based off of the center pixel row in the group. The

pixel is taken from the top area of the pixel row in

an attempt to select a color representative of the

object. A better implementation would’ve selected

the representative color more intelligently, but this

implementation worked acceptably with such a

simple selection process.

Rovio Mapping Using Color Based Object Localization

Alexander W. Mora, awm25

B. Projection of Colors

Following the grouping of vertical lines the

groups are then projected onto a 2D plane that is

parallel to the ground. This is accomplished by

calculating the area of the webcamera’s vision

occupied by each group. This area is given by the

actual column location of the pixels. The vector is

then calculated using a calibrated distance to the

view window with a measured width of the view

window. This vector is then followed until the

edge of the mapped region. All along the vector

the color of that group is applied to the floor map.

Ideally, this application of color would also

include consideration for the application of the

same color to the map as had already been drawn.

This would indicate that an object had already

been seen in this location from another direction.

When the same color is recognize the cast length

of the vector can be truncated to end at the given

location of the object as determined by the

separate viewing direction. In Figure 4 you can

see the orange cone is being projected and

overlapping with another viewing of the same

area.

C. Figures

The following figures show the application of

this algorithm to a scene.

Figure1. View from Position (x=0, y=0, ang=0)

Figure 2. Smoothed Image

Figure 3. View from

Position (x=24, y=-20, ang=π/2)

Figure 4. Results from Projection onto Floor

III. RESULTS

This method seemed to be generally effective;

however, I was unable to apply this procedure to

the location information given by Rovio’s

navigation system due to some of the inaccuracies

of its measurement. As a result, the majority of the

calculations had to be completed given very

specific values not from the robot.

Additionally, the segmentation algorithm which

was the majority of the work needed some careful

attention to some of the variables controlling the

smoothing window width and height, the threshold

difference, and the minimum group size. The

initial values that were chosen ended up being too

low resulting in far too many groups. This was

corrected using a very simple learning

optimization algorithm.

The image analysis was performed with a

specific initial set of parameters to the analysis.

Then based off of the error between the discovered

number of groups and the expected number of

groups for a given image, the parameters were

adjusted in an attempt to reduce the error. The

training values of the expected number of groups

for a given image were inserted by me and the

algorithm was set to distinguish more appropriate

values. This learning approach was necessary

because there were four variables to optimize

over. The difference in error for the training set of

15 of the 40 images can be seen in Table 1.

Additionally, Figure 6 and Figure 7 show the

differences in the vertical segmentation and

grouping given by the trained and untrained

parameters on Figure 5. The training may have

over reduced the segmentation.

Figure 5. One of the Training Scenes

Figure 6. Untrained Parameters (black is

ungrouped area)

Figure 7. Trained Parameters

Table 1. Sample of Training Results

15 of 40 Test

Cases

Untrained

Absolute Error

Trained

Absolute Error

1 4 1

2 3 1

3 2 1

4 9 3

5 2 3

6 8 1

7 5 2

8 9 4

9 5 4

10 8 1

11 7 1

12 7 3

13 4 5

14 6 2

15 6 2

SUM : 85 34

