
  

 

Abstract—I attempted to design and 

implement a procedure for localizing objects in 

a region using object colors. The platform used 

was the Rovio robot. To accomplish this task 

the image from the robot was analyzed to 

distinguish directions of color to correspond to 

objects within the scene. This was then 

combined with the position information from 

Rovio’s navigation system to allow for specific 

direction information within the environment.  

I. INTRODUCTION 

THIS project focused on the use of Rovio to create 

a map of a scene. The method used for creating 

the scene was developed specifically for this 

application. Rovio’s navigation information and 

web camera were used in combination.  

The web camera’s image was analyzed to divide 

it into vertical segments that indicated significant 

vertical attributes in the scene. This technique was 

designed in reaction to the realization that most 

objects within a scene have a significant vertical 

component. Some examples of this are doorways, 

boxes, chair legs, and trash receptacles. The 

vertical segments were produced using the general 

design of a color segmentation algorithm. This 

vertical information is then projected in directions 

determined by the camera’s view.  

Following this image analysis the projection is 

then combined with the navigation information to 

locate it on a 2D plane of the floor. By projecting 

this information onto the floor a general idea of 

object location can be derived. Combined with 

different perspectives on the same region specific 

locations can be determined by locations in which 

directions of the same color overlap. 

With enough views and perspective the entire 

region within Rovio’s navigation system could 

have been accurately mapped; however, this 

project did not make it that far towards 

implementation. 

II. PROCEDURE FOR MAPPING SYSTEM 

A. Analyze Web Camera Image 

The image analysis technique stemmed from the 

graph based color segmentation algorithm. The 

image initially is smoothed by a Gaussian filter. 

Then each vertical line of pixels was distinguished 

as a node. The difference between each node and 

their neighbor is established by a simple squared 

difference calculation. This produces a weighted 

edge between each node. Afterwards, the edges 

are sorted and are inserted into the graph from 

lowest weight to highest. The edge is only inserted 

if the max difference of the two different 

connected components on each end of the edge 

plus a threshold value scaled by the size of the 

connected component is greater than the weight of 

the edge to be inserted.  

 After all the edges have been inserted into the 

graph what this creates is a collection of connected 

components of vertical lines that share generally 

similar attributes. This follows from the 

philosophy that the algorithm is looking for 

vertical features in the image like chair legs and 

door frames. After these initial groups are created 

the smaller groups are removed from the 

collection. This is necessary because at the border 

between various vertical features in the image 

there are liable to be significant changes in the 

vertical lines of pixels that aren’t significant to the 

actual object we’re looking to differentiate. 

 Each of these groups is then assigned a color 

based off of the center pixel row in the group. The 

pixel is taken from the top area of the pixel row in 

an attempt to select a color representative of the 

object. A better implementation would’ve selected 

the representative color more intelligently, but this 

implementation worked acceptably with such a 

simple selection process. 
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B. Projection of Colors 

Following the grouping of vertical lines the 

groups are then projected onto a 2D plane that is 

parallel to the ground. This is accomplished by 

calculating the area of the webcamera’s vision 

occupied by each group. This area is given by the 

actual column location of the pixels. The vector is 

then calculated using a calibrated distance to the 

view window with a measured width of the view 

window. This vector is then followed until the 

edge of the mapped region. All along the vector 

the color of that group is applied to the floor map. 

Ideally, this application of color would also 

include consideration for the application of the 

same color to the map as had already been drawn. 

This would indicate that an object had already 

been seen in this location from another direction. 

When the same color is recognize the cast length 

of the vector can be truncated to end at the given 

location of the object as determined by the 

separate viewing direction. In Figure 4 you can 

see the orange cone is being projected and 

overlapping with another viewing of the same 

area. 

C. Figures 

The following figures show the application of 

this algorithm to a scene. 

 

 

 
Figure1. View from Position (x=0, y=0, ang=0) 

 

 

 

 

 

 
Figure 2. Smoothed Image 

 
Figure 3. View from  

Position (x=24, y=-20, ang=π/2) 

 
Figure 4. Results from Projection onto Floor 



  

III. RESULTS 

This method seemed to be generally effective; 

however, I was unable to apply this procedure to 

the location information given by Rovio’s 

navigation system due to some of the inaccuracies 

of its measurement. As a result, the majority of the 

calculations had to be completed given very 

specific values not from the robot. 

Additionally, the segmentation algorithm which 

was the majority of the work needed some careful 

attention to some of the variables controlling the 

smoothing window width and height, the threshold 

difference, and the minimum group size. The 

initial values that were chosen ended up being too 

low resulting in far too many groups. This was 

corrected using a very simple learning 

optimization algorithm.  

The image analysis was performed with a 

specific initial set of parameters to the analysis. 

Then based off of the error between the discovered 

number of groups and the expected number of 

groups for a given image, the parameters were 

adjusted in an attempt to reduce the error. The 

training values of the expected number of groups 

for a given image were inserted by me and the 

algorithm was set to distinguish more appropriate 

values. This learning approach was necessary 

because there were four variables to optimize 

over. The difference in error for the training set of 

15 of the 40 images can be seen in Table 1. 

Additionally, Figure 6 and Figure 7 show the 

differences in the vertical segmentation and 

grouping given by the trained and untrained 

parameters on Figure 5. The training may have 

over reduced the segmentation. 

 
Figure 5. One of the Training Scenes 

 
Figure 6. Untrained Parameters (black is 

ungrouped area) 

 
Figure 7. Trained Parameters 

Table 1. Sample of Training Results 

15 of 40 Test 

Cases 

Untrained 

Absolute Error 

Trained 

Absolute Error 

1 4 1 

2 3 1 

3 2 1 

4 9 3 

5 2 3 

6 8 1 

7 5 2 

8 9 4 

9 5 4 

10 8 1 

11 7 1 

12 7 3 

13 4 5 

14 6 2 

15 6 2 

SUM : 85 34 

 


